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Mastering many practical problems in our world demands a deeper and more integrated understanding
of biochemical and evolutionary processes than we can currently muster. For example, to fight bacterial
infections we need to understand the biochemistry of bacterial phenotypes for designing efficient antibiotics
and we also need to understand the population genetics and ecology of these bacteria to design antibiotics
usage policies that reduce the speed with which antibiotics resistance evolves [18]. To fight cancer we need
to understand the signaling pathways that allow cells to ignore growth control and we also need to understand
the population genetics that allow cancer cells to maintain a competitive edge, diversify, migrate and evolve
resistance against chemotherapy [9]. Similar challenges of integrating molecular biology and evolutionary
biology exist for controlling virus infections, developing bioenergy solutions and many other hot topics.
Building bridges between systems biology and evolutionary biology has the potential to provide us with the
tools to build and test the hypotheses required for addressing these problems. Developing such an integrated
approach is, in a nutshell, the goal of the emerging field of evolutionary systems biology.

Evolutionary systems biology is a broad field, and its key questions and the best ways of attacking them
are still being defined. Progress in evolutionary systems biology demands close collaboration between exper-
imentalists, theorists, and computational modelers. This workshop set out to bring together a diverse group
of researchers from all three sub-disciplines to share problems and progress, with a focus on connecting data
with models.

1 Overview of the Field
In the last decade many have pointed to ’systems biology’ as a research program that integrates knowledge,
mostly about molecular and cellular systems, to arrive at a deeper understanding. Indeed, after decades of
investigating biochemical reactions and molecular processes in isolation, it was time to start putting the pieces
of the puzzle together to help see the bigger picture [26]. The development of sophisticated mathematical
methods for simulating the dynamics of complex non-linear models [8] provided a formalism which enabled
the precise description of integrated models. While there is no accepted definition of ’systems biology’ many
would say that the repeated refinement of mathematically precise integrated models is fundamental to most
systems biology. Such activities have led to much progress in the area of molecular systems biology and
other fields that study processes within organisms.

As pointed out repeatedly, the theory of evolution is the unifying theory in biology. Since the found-
ing fathers of population genetics started investigating how mutation, selection, genetic drift, recombination
and migration work together to shape the evolution of life, biologists have worked towards integrating an
ever increasing body of evidence into the theory of evolution, ranging from molecular details to ecosystems.
Evolutionary biology, ecology, population genetics and related fields have developed substantial mathemat-
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ical expertise in building mechanistic models, analyzing stochastic patterns and evaluating theories (e.g.,
[5, 16, 27]).

Evolutionary systems biology seeks to develop a unified understanding of the evolution and function of
molecular systems [13]. As such, it draws on insights from systems biology to define how molecular systems
function to create phenotypes and how those phenotypes are altered by mutations and other perturbations.
Mutations that alter organismal phenotypes often also alter organismal fitness, upon which natural selec-
tion acts. Models from evolutionary biology can then be leveraged to understand the fate of those mutations.
Eventually, evolutionary systems biology promises to enable predictive modeling of molecular systems across
both functional and evolutionary scales. Reaching that goal, however, demands addressing several outstand-
ing open problems.

2 Recent Developments and Open Problems
Both focal points of integration have their strengths and weaknesses. Building on its molecular or physiolog-
ical roots, systems biology can produce extraordinarily elegant mechanistic models of processes that occur
within cells or organisms; however it often ignores evolutionary processes or simply assumes that all re-
sults of evolution are always optimal. Likewise, population genetics and ecology can produce extraordinarily
elegant mechanistic models of evolutionary processes, which can be defined as processes that involve any in-
tergenerational inheritance of hereditary material in self-replicating entities; however, these disciplines often
collapse all complexities of molecular biology and physiology into a few numbers like fitness, selection co-
efficients, survival rates. While such discipline-specific assumptions are very powerful and have led to much
progress by separating domains of concern, they have also started to break down in recent years as our models
have become more realistic. For example, evolutionary biologists have become increasingly interested in the
molecular mechanisms of their study systems. Likewise, systems biologists are realizing that some of the
problems they are interested in actually involve inheritance of genomes over many generations and require an
understanding of evolutionary factors. Bringing together both areas of biology is set to stimulate many new
interesting research questions and insights [23].

A key challenge for both systems biology and evolutionary biology is the complexity of the systems
they study. Indeed much effort in research is dedicated towards finding mechanisms and abstractions that
can reduce that complexity when building models without losing either touch with reality or the ability to
analytically understand at least some key aspects of a model. Evolutionary systems biology inherits the
same challenges, however, it can also offer additional tools. We know that the same systems have to satisfy
two constraints: they have to work mechanistically within individuals and they have to satisfy evolutionary
constraints. This fact could be used in a similar manner to Occam’s razor: use evolutionary considerations to
rule out unrealistic biochemical models or use biochemical considerations to rule out unrealistic evolutionary
models. Both uses have the same effect that Occam’s razor is known for: keep models as simple as possible,
but not simpler. This idea is masterfully implemented in flux-balance analyses [15], where valid models (i)
have to satisfy the stoichiometry of known biochemical reaction networks and (ii) are then optimized for a
property that limits growth (e.g. biomass production). Resulting predicted outcomes of evolution of E. coli
cells could even be verified in the lab [10]. It is easily conceivable that similar uses of Occam’s razor could
simplify other modeling scenarios with more complicated dynamics or, for example, by using analyses of
quantitative trait loci to determine a credible space of systems biology models.

Evolutionary theory and population genetics give strong predictions about the trajectory of a mutation
with a given effect on fitness, but much less is known about the input spectrum of mutational effects [6]. This
is because natural selection acts not directly on the genetic mutation itself, but rather through the mutation’s
effect on phenotype, and the genotype-to-phenotype map is very complex, frequently involving very small
mutational effects. Systems biology decomposes the genotype-to-phenotype map by focusing on mechanis-
tic descriptions of the molecular components and interactions that ultimately generate the phenotype. This
pathway and network perspective provides a framework for understanding and predicting evolutionarily im-
portant properties of mutations, including pleiotropy (the degree to which a single mutation effects multiple
phenotypes), epistasis (the degree to which mutations interact), and effect sizes. Integration with systems
biology thus offers to make evolutionary biology much more predictive, because mutational effects can be
understood much more deeply.
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High-throughput sequence determination has developed remarkably fast, and high-throughput phenotyp-
ing of individuals must catch up. Recent work in high-throughput yeast morphology phenotyping though
imaging is a promising example [28]. Additional progress in dynamically measuring gene expression or
protein interaction in large numbers of individuals for large numbers of markers will allow for a much more
direct connection between morphological phenotypes and underlying biomolecular changes. This need for
high-throughput phenotyping extends all the way to individual molecules. General properties of the effects
of random mutations on proteins or binding sites are an important input to quantitative models of system
evolution, but they remain to be measured. Developing high-throughput phenotyping assays demands tech-
nological innovation, but the payoffs are potentially very large.

Although we now know a great deal about divergence in genetic sequence between species and between
individuals within a species, very little is known about divergence in pathways and other molecular functions.
A systematic effort to generate such data is critical to progress in evolutionary systems biology. Anecdotal
examples suggest that even when a system uses orthologous molecular components, their interactions may
differ dramatically [20], but the generality of this phenomenon is unclear. We anticipate that it will be
particularly fruitful to study relatives of existing model organisms, because measurement techniques will be
more transferable, and new data sets can be integrated with a wealth of existing information. Understanding
differences between species will give insight into what features of molecular networks are targeted by natural
selection. Extending such measurements to the more subtle differences between individuals will give insight
into the system-level variation on which natural selection can act.

It will also be important to incorporate what is known about molecular biology into sequence analysis.
For example, existing knowledge of biological pathways and molecular function can provide useful priors for
GWAS analysis in connecting phenotypes to genetic changes. This will provide additional information to the
important and difficult task of identifying genetic changes that were driven by selection and those that evolved
by neutral drift. Further clarifying this distinction will finally answer a longstanding question in evolutionary
biology: does evolution proceed more often by changing protein sequence or by changing regulation? The
answer to this question may vary, depending on taxonomic class and the selective forces, but it is an essential
link to bridge evolutionary and systems biology.

3 Presentation Highlights
Evolutionary systems biology is a very broad field, and the talks at this Workshop were correspondingly
diverse. Here we highlight a fraction of the Workshop presentations, in order to convey the breadth of
the field. We first highlight presentations on biological problems, then highlight presentations focused on
computational methods. Many presenters shared unpublished results, and to preserve their confidentiality,
we do not discuss details of those presentations.

Metabolic networks, which govern energy and material flows within organisms, are among the best-
studied model systems for evolutionary systems biology. Frank Bruggeman gave a wonderful overview of
the many selection pressures experiments may impose on the metabolism of microbes, and how those pres-
sures may be modeled. Serial dilution experiments select for fast growth rate, chemostats select (potentially)
for affinity for the limiting nutrient, and recent experiments in droplets select for yield given a limiting
nutrient. Flux-balance analysis provides a powerful way for modeling steady-state metabolic process, partic-
ularly because such models typically require much less information about the system than dynamical models.
Consideration of the metabolic benefits of an enzyme and the cost of producing it can then define a fitness
landscape, over which the expression of multiple metabolic enzymes can be optimized [2]. Working on a
larger scale, Elhanan Borenstein discussed using genome-scale models of metabolic networks to infer the
environments that particular microbes exist in, a sort of “reverse ecology” [11]. Given the growing interest
in microbial communities, this approach can be broadened to considering the metabolic networks of entire
communities, for example, in the human gut [12].

In many microbial communities, growth on surfaces and subsequent biofilm production is important
for efficiently gathering resources and resisting toxins (such as antibiotics) [3]. Joao Xavier presented his
recent experiments on the bacterium Pseudomonas aeruginosa [25]. When grown on swarming media, Pseu-
domonas colonies repeatedly evolve a “hyperswarming” phenotype. These hyperswarmers outcompete the
wild type by filling the whole plate, rather than restricting their growth to a branched pattern. Remarkably,



4

Xavier found that this phenotype was driven by parallel amino acid substitutions in a single gene, fleN .
These mutations result in the growth of multiple flagella, changing the bacterial movement pattern. This is
a remarkable example of convergent evolution, not only in the phenotype in the bacteria, but also in their
molecular systems.

Over time, cells accumulate non-genetic damage that may contribute to aging, both in animals like our-
selves and in bacteria. In animals, the aging clock is reset upon fertilization of the eggs, but for microbes that
divide symmetrically, that clock is never reset. Lin Chao presented his modeling work on the accumulation
of the “damage load” of damaged biomolecules in microbes [4]. Chao showed using a model and dynamical
systems arguments that below a critical threshold rate of damage accumulation, cells are immortal. Above
that threshold, cells must divide asymmetrically, to segregate damaged biomolecules in one “older” cell while
providing the “younger” cell with fresh biomolecules. Comparing his model with recent microfluidics ex-
periments on E. coli, he showed that they divide almost perfectly symmetrically, suggesting that damage
accumulation is slow for this bacteria. This work highlights the interplay between biomolecular effects of
damage and evolutionary life-history effects of division asymmetry.

Biomolecular damage may contribute to aging, but molecular mistakes may play an important role in
evolution. In particular, Joanna Masel presented work on cryptic sequences. These are regions of the genome
that are only rarely expressed [14]. For example, sequences past the normal stop codon in a protein are
only translated if there is an error in reading the stop codon. These sequences thus evolve under very low
purifying selection and can accumulate diversity. If, however, stressful conditions lead to their expression,
that diversity can be harnessed because it may hold adaptive mutations. Recent work from the Masel group
has analyzed the trade-offs in this sort of system. Does evolution favor systems in which errors are very
rare but have dramatic phenotypic effects, or in which errors are common but have small phenotypic effects?
Intriguingly, the answer depends on population size [19]. Particularly important is that the common error
scenario enhances evolvability, by increasing the range of possible genotypes and phenotypes a population
can access. This again suggests how particular molecular mechanisms (and the errors they create) can have
profound impacts on the evolutionary process.

A major challenge for evolutionary systems biology is to map the consequences of specific genomic
sequences. A particular challenge is epistasis, in which the phenotypic effect of a mutation depends on the
context of other mutations. Ilya Nemenman shared his recent work examining epistatic effects in the E.
coli lac promoter [17]. Nemenman took advantage of a recent data set that measured the expression driven
by roughly 129,000 different mutagenized versions of the 75 basepair promoter. By fitting first-, second-,
and higher-order statistical models, Nemenman showed that about two-thirds of the variance in expression is
explained by the first-order non-epistatic effects. This was unexpectedly low, suggesting that the phenotypic
landscape for this promoter is relatively simple. This is an optimistic message for researchers attempting to
understand phenotypic landscapes in more complex systems.

A particularly important complexity in biology is that phenotypes typically arise from the interactions
of multiple proteins and the resulting systems often have strongly nonlinear dynamics. Michael Savageau
presented his S-system formalism for modeling such systems [22]. An S-system is a system of ordinary
differential equations in which the right-hand sides are all sums of terms which are products of power-law
functions. This generalization of mass-action kinetics is a good approximation for many biochemical sys-
tems, and the special form of the equations allows the development of specialized and powerful numerical
and analytical solution techniques. Particularly intriguing is the use of this form to rigorously define bio-
chemical phenotypes [21], by defining the regions in parameter space in which particular terms dominate.
Once rigorously defined, the robustness of phenotypes to changes in parameters can be efficiently studied
by analytic and numerical approaches. The S-system approach offers great promise for analytically under-
standing the qualitative phenotypes possible from a biochemical system, but simulation remains a backbone
of evolutionary systems biology.

Stochastic simulation is particular relevant to evolutionary systems biology, because evolution is inher-
ently stochastic, and many of the biochemical systems of interest employ small numbers of molecules. Linda
Petzold has long been on the forefront of numerical simulation, both deterministic and stochastic, and she
summarized the development of stochastic simulation methods and her group’s recent software develop-
ments. In particular, approximation methods that improve the efficiency of Gillespie’s classic exact algo-
rithm have become increasingly important, be they tau-leaping or hybrid methods that incorporate determin-
istic simulations. In addition to generating simulations, techniques for capturing rare events and optimizing
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parameters are essential. A new frontier is spatial stochastic simulation, in which molecules are tracked
in space as well as in time. Petzold’s group has recently released StochSS, a cloud-based platform that is
incorporating a growing number of sophisticated stochastic simulation tools into an easy-to-use package:
http://www.stochss.org. This holds great promise for modeling complex dynamic systems.

In addition to developing improved simulators, the theory of stochastic simulation is also improving. In
particular, David Anderson present his recent results on using multi-level Monte Carlo to estimate expecta-
tions of stochastic processes [1]. This approach offers much faster estimation of these quantities than simply
averaging over many exact simulations, yet it avoids many of the biases that can be introduced by approxi-
mate simulations. Calculation of such expectations is particularly important for fitting simulations models to
data, and a key goal of evolutionary systems biology.

In comparing models with data, a key step is optimizing parameter values to best match that data. Michael
Ferris presented an overview of optimization techniques from many fields that have the potential to impact
evolutionary systems biology. For example, compressed sensing and the LASSO method aim to minimize
the number of parameters needed to explain the data, thus providing a statistical implementation of Occam’s
Razor. Ferris was also helpful in responding to attendees particular needs for optimization advice.

A particular challenge of systems biology is that the molecular agents that interact are themselves com-
plex objects. James Faeder highlighted how molecular bindings can result in a combinatorial explosion of
potential molecular species. This explosion can be handled well by rule-based modeling approaches [7].
These are appealing because they allow for a high level of abstraction and can in principle capture many
molecular interactions that are often neglected when modelers study hand-built ODE models. Faeder pro-
vided an overview of progress in developing rule-based modeling tools (see http://bionetgen.org)
and highlighted in particular his group’s recent work on Atomizer, a method for extracting the molecular
rules that are implied by a given set of differential equations [24]. Applying this approach to existing models
reveals ways in which the implicit approximations made by the modelers have resulted in altered behaviors.
It also offers the possibility of easily coupling those models onto models of related systems, a process that to
date has necessitated careful and laborious manual checking.

4 Outcome of the Meeting
Evolutionary systems biology is a young emerging field, and its practitioners are spread across mathematics,
computer science, systems biology, and evolutionary biology. Thus a key goal of this meeting was to bring
together researchers with common interests to share problems and ways of attacking them. In that, we
think the meeting was a great success. The biology-oriented presentations highlighted a large number of
important and intriguing questions that evolutionary systems biology is addressing. The simulation-oriented
presentations highlighted both established and new tools for addressing those questions. It was clear from
the discussion of the participants that many felt this was an important meeting for creating the evolutionary
systems biology community. Many participants bonded both socially and scientifically with colleagues they
would never have encountered in their normal circuit of conferences. Forming those connections is, we
believe, one of the most important goals for meetings in an emerging field.

We hope to carry the energy and enthusiasm of this meeting forward into future meetings at BIRS. On the
last day of this meeting, the participants collectively developed plans for a follow-up meeting in 2015. A goal
of that meeting will be to focus on more analytical approaches to understanding biochemical networks. This
meeting made it clear that simulation technology is progressing rapidly, but simulating biochemical systems
in a whole population of individuals is likely to remain daunting for the foreseeable future. Thus progress in
evolutionary systems biology will be greatly enhanced by improved theoretical understanding of the dynamics
of biochemical reaction systems. Those theoretical developments will be most powerful, however, if they are
guided by experimental insights. Thus that future meeting will also bring together experimentalists, modelers,
and theorists.

Evolutionary systems biology is an exciting emerging field in mathematical biology. Integrating a molec-
ular understanding of life with broader evolutionary principles promises to shed new light onto important sci-
entific and societal problems. Because the field sits in between traditional disciplines, independent meetings
such as the present are critical to pushing the field forward and nucleating a new community of evolutionary
systems biologists.
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